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In this paper, spatial correlations of parallel edge dislocations are studied. After closing a hierarchy of
equations for the many-particle density functions by the Kirkwood superposition approximation, we derive
evolution equations for the correlation functions. It is found that these resulting equations and those governing
the evolution of density fields of total as well as geometrically necessary dislocations around a single edge
dislocation are formally the same. The second case corresponds to the already described phenomenon of Debye
screening of an individual dislocation. This equivalence of the correlation functions and screened densities is
also demonstrated by discrete dislocation dynamics simulation results, which confirm the physical correctness
of the applied Kirkwood superposition approximation. Relation of this finding and the linear-response theory in
thermal systems are also discussed.
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I. INTRODUCTION

It is well known that plastic deformation of crystalline
materials is caused by the motion of a large number of inter-
acting dislocations. Although the properties of individual dis-
locations have been known for decades, the question of how
to build up a micronscale level continuum description of
dislocations is still an unresolved issue in the theory of crys-
tal plasticity. The appropriate continuum theory could pro-
vide a framework for understanding dislocation pattern for-
mation or size effects.

Several phenomenological models have been proposed for
dislocation patterning so far. Here, we first mention the work
of Walgraef and Aifantis,1,2 who adopted a reaction-diffusion
model from the description of oscillating chemical reactions.
In their model, second-order gradient terms are introduced to
account for the spatial fluctuations of the dislocation density.
Although the framework turned out to be very successful in
the prediction of different dislocation structures, the physical
origin of the length scales introduced through the coefficients
of the gradient terms is not really understood. The same
problem applies to the model of Kratochvíl and
co-workers,3,4 in which nonlocal terms are introduced for
describing spatial interactions through the sweeping mecha-
nism.

In a nonphenomenological model proposed by Groma,5 a
system of parallel edge dislocations in single slip was stud-
ied. By performing ensemble averaging on statistically
equivalent dislocation distributions, a chain of equations for
the many-body dislocation density fields was derived. First,
dislocation correlations were neglected, which corresponds
to a mean-field approximation.6 Here, the stress acting on
dislocations is simply the “self-consistent” field, which is the
long-range stress field of the geometrically necessary dislo-
cations. If the dislocation system is correlated, which is in-
deed the case for real systems �see, e.g., in Ref. 7�, further
stresslike terms appear in the constitutive equations.8 The
most important nontrivial term is the gradientlike “back
stress,” which can be interpreted as the short-range effect of

dislocation pileups. In order to check the validity of this
two-dimensional �2D� theory, its predictions were compared
to discrete dislocation dynamics simulation results; good
agreement was found.9,10

There are several current approaches in the literature to
develop a density-based continuum model for three dimen-
sions �3D�. El–Azab based his theory on Nye’s dislocation
density tensor.11 After studying the mean-field approximation
of an uncorrelated ensemble in their recent paper, El–Azab et
al.12,13 turned to the investigation of dislocation correlations
on simulated 3D dislocation ensembles in a body-centered-
cubic crystal. Csikor et al.14 reported about a complementary
numerical study, focused on the range of 3D dislocation pair
correlations in face-centered-cubic materials. Recently, an-
other promising theory has been proposed by Hochrainer and
co-workers,15–17 who studied the evolution of dislocation
lines in a higher-dimensional space. Motivated by the 2D
results, dislocation correlations are introduced into the theory
semiphenomenologically by considering short-range stress
terms, such as the aforementioned back stress.17 Similar ex-
tension was adopted by Schwarz et al.18 too for a continuum
theory of interacting curved dislocations.19 In all mentioned
current 3D continuum theories of dislocation dynamics, one
of the biggest challenges is the precise incorporation of the
effects of dislocation correlations, which seems to be un-
avoidable. So, the investigation of the evolution of the cor-
relation properties is of great importance, but even in 2D,
this problem has not been solved yet.

In the past two years, light has been shed on equilibrated
dislocation systems by the discovery of the effect of disloca-
tion screening.20,21 Its most direct physical significance is
that it explains the extensivity of the elastic energy in equi-
librium by the appropriate relative arrangement of the dislo-
cations, resulting generically in a finite interaction length,
rather than the unscreened infinite range interaction. On the
technical side, in the simplest example represented by a 2D
single slip, edge dislocation system, an effective thermody-
namic potential was proposed for the purpose of the varia-
tional calculation of the geometrically necessary density.
Summarizing the results for large and constant total disloca-
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tion density, and for small but variable geometrically neces-
sary density, the equation for the induced density with arbi-
trary external dislocations was constructed and its Green’s
function for infinite boundary conditions was given analyti-
cally. Hence, the induced density and the resulting screened
elastic potential by a single external dislocation was ob-
tained, showing suppression in all directions exponentially
strong except for one axis, where it was of power type. This
phenomenon bears close resemblance to Debye screening of
an external charge in Coulomb systems, so this term was
adopted also for dislocations. In the same work,20 numerical
results were presented, but because of the prohibitive fluc-
tuations of the dislocation distribution induced by an external
fixed dislocation, the signed pair correlation of dislocations
in equilibrium was monitored. Even in the latter function, an
agreement with the theory was found.

It should be borne in mind that the relation between the
externally induced density �response function� and the corre-
lation function is based on linear-response theory in thermal
systems. However, in the dislocation system considered pres-
ently, entropic effects are suppressed, i.e., thermal fluctua-
tions are negligible beside the Peach-Koehler forces. There-
fore, traditional arguments of linear-response theory do not
obviously apply. This raises the question, why then the ex-
ternally induced dislocations obey properties similar to those
of correlation functions. The problem can be actually posed
in a broad sense, namely, to what extent the response func-
tion to an external particle and the two-particle correlation
function in or off equilibrium are similar. The evolution
equations for the one-point densities with some simplifying
hypotheses are known,8 and they have been linked to the
variational approach by a phase field construction.21 The
evolution equations for the two-point correlation functions,
however, could not be brought to any treatable form so far.

As a recent development, Vinogradov and Willis22,23 pub-
lished an evolution equation for the correlation function of
long parallel screw dislocations with the same Burgers vec-
tors. They even solved the resulting equation for the static
case analytically. It was found, however, that the generaliza-
tion of this result for the case of two possible Burgers vectors
�positive and negative dislocations� or for edge dislocations
leads to a solution not decaying at infinity, thus it cannot be
correct physically.

In this paper, we investigate the evolution of correlation
functions of long parallel edge dislocations with single slip.
We start our analysis with the Bogoliubov-Born-Green-
Kirkwood-Yvon �BBGKY� hierarchy, describing the evolu-
tion of dislocation many-body densities, which was derived
earlier by Groma.5 In contrast to the cluster approximation
used by Vinogradov and Willis,22,23 we apply the Kirkwood
superposition approximation as a method to close the chain
of equations. The resulting equations, when rewritten for ap-
propriately introduced single-point fields, are similar to those
describing the evolution of one-dislocation density functions
in the presence of a single external dislocation. In fact, they
become identical if the external perturbation is small enough,
thus we arrive at the analog of linear-response theory in ther-
mal systems, now obtained for density fields at zero tempera-
ture. It should be kept in mind, however, that the relation is
now conditioned on the Kirkwood approximation for the

two-point correlations. In order to test the extent of the anal-
ogy between the one- and two-point densities, we also per-
formed extensive simulations. First, we compared the equi-
librium distributions induced by the screened single external
dislocation with the appropriate fields from the two-point
correlations and found a quite satisfactory agreement. Sec-
ond, the time evolutions of the two types of density fields
were matched and again, close similarity was observed even
before reaching equilibrium. This essentially demonstrates
that the Kirkwood closure approximation was justified and
the resulting equations indeed well describe the evolution of
the correlation functions. We also analyze the cluster ap-
proximation of Vinogradov and Willis, adopted for edge dis-
locations, and show that it leads to a physically unacceptable
result for the evolution equation of the correlation functions.

The paper is organized as follows: In Sec. II we derive the
equations of motion for the two-point correlation functions
and for the formally introduced, effectively one-point fields.
Section III recuperates the equations for the single disloca-
tion densities, while Sec. IV is devoted to the comparison of
the previous two sections’ results. Section V contains the
presentation of the outcome of the simulations. The conclu-
sions are followed by the Appendix, containing background
calculations for Sec. II.

II. TIME EVOLUTION OF THE CORRELATION
FUNCTIONS

Let us consider a system of parallel edge dislocations with
single slip system, where only overdamped glide motion is
allowed. By considering a cross section of the crystal per-
pendicular to the dislocations, the problem becomes two di-
mensional with pointlike objects. If si denotes the sign of the
ith dislocation, then its Burgers vector is bi=sib �si� �+,−�
and bª �b ,0��. Let ri�t� be the position and vi�t� the velocity
of the ith dislocation at time t. The equation of motion of the
ith dislocation can then be written in the form,

vi�t� = B��
j=1

j�i

N

sjbi�ind„ri�t� − r j�t�… + bi�ext„ri�t�…	 , �1�

where B is the dislocation mobility, �ind is the shear stress
field generated by a single edge dislocation positioned in the
origin, and �ext�r� is an arbitrary spatially varying external
stress field. In the studies presented in this paper, the medium
is assumed to be isotropic; hence,

�ind�r� =
�
b


2��1 − ��
x�x2 − y2�
�x2 + y2�2 , �2�

with � and � being the shear modulus and the Poisson’s
ratio, respectively. Since the value of the kinetic coefficient B
only affects the time scale of dislocation motion, in the rest
of this paper, it is absorbed into the time unit with the t
→Bt substitution. The same could be done with the � and �
material parameters, with the system size, and with the Bur-
gers vector 
b
 �for details, see Sec. V�.

In order to describe a discrete system of dislocations, it is
useful to introduce discrete n-particle dislocation densities,
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e.g., �1
D,s�r , t�ª�i=1

N �s,si
�(r−ri�t�) for n=1 in a system of N

dislocations �for details, see, e.g., Ref. 21�. Here, with the
superscript s we make a distinction between the densities of
positive and negative dislocations. Higher-order discrete
densities could be defined accordingly. In order to get
smooth density functions, one has to perform averaging over
statistically equivalent systems, which is denoted as, e.g.,
�1

s�r , t�ª ��1
D,s�r , t��. After performing the averaging proce-

dure, Groma5 obtained a chain of evolution equations for the
�n

s1, . . .,sn n-particle density functions of the system. These
equations give the rate change of �n

s1, . . .,sn, which depends on
both itself and the one-level higher density function
�n+1

s1, . . .,sn+1. This type of chain of equations is called BBGKY
hierarchy in statistical physics. To make it possible to solve
these infinite number of equations, the hierarchy must be
chopped at a certain level.

We start our investigations at the first level of the hierar-
chy, which governs the evolution of the one-particle density
functions:5

��1
s1�r1,t�
�t

+
�

�r1
�

s2=	1



R2
�2

s1,s2�r1,r2,t�Fs1,s2�r1 − r2�d2r2

+
�

�r1
��1

s1�r1,t�Fext
s1 �r1�� = 0, �3�

where �n
s1, . . .,sn denotes the n-particle dislocation density

function with si referring to the sign of the ith dislocation,
Fs1,s2�r1−r2� is the interaction force between two disloca-
tions at positions r1 and r2, and with signs s1 and s2 �ri
�R2�,

Fs1,s2�r� = s1s2�ind�r�b . �4�

The �ext�r� spatially varying external shear stress results in
the extra Fext

s �r� force depending on the sign s,

Fext
s �r� = s�ext�r�b . �5�

Solving Eq. �3� generally �with arbitrary boundary condi-
tions� requires the additional knowledge of �2.

In this section, we investigate the relaxation of disloca-
tions from a random initial state in an infinite medium at zero
external shear stress. Since the equations of motion of the
dislocations do not have a direct spatial dependence, the sys-
tem is invariant under translations. In this case, the system is
homogeneous, meaning the one-particle density functions �1

s

cannot have a spatial dependence, i.e.,

�	
ª �1

	�r,t� = const �6�

This is a trivial solution of Eq. �3�. One can draw two simple
conclusions from it:

�i� the two-particle density functions depend only on the
difference of their arguments:

�2
s1,s2�r1,r2,t� = �2

s1,s2�r1 − r2,t�, s1,s2 � �+ ,− � , �7�

�ii� and the following identity holds:

�
s2=	1

s2

R2

�2
s1,s2�r,t��ind�r�d2r = 0, s1 � �+ ,− � . �8�

We now proceed to the evolution equations of the two-
particle density functions:5

��2
s1,s2�r1,r2,t�

�t
+ � �

�r1
−

�

�r2
���2

s1,s2�r1,r2,t�Fs1,s2�r1 − r2��

+
�

�r1
�

s3=	1



R2
�3

s1,s2,s3�r1,r2,r3,t�Fs1,s3�r1 − r3�d2r3

+
�

�r2
�

s3=	1



R2
�3

s1,s2,s3�r1,r2,r3,t�Fs2,s3�r2 − r3�d2r3

+
�

�r1
��2

s1,s2�r1,r2,t�Fext
s1 �r1��

+
�

�r2
��2

s1,s2�r1,r2,t�Fext
s2 �r2�� = 0. �9�

It has to be noted that by definition �2
s1,s2�r1 ,r2 , t�

=�2
s2,s1�r2 ,r1 , t�.
A possible method to truncate the hierarchy at this level is

to express �3
s1,s2,s3 in the so-called cluster expansion and ne-

glect the three-particle correlation term, as it was done by
Groma,5 and more recently by Vinogradov and Willis.22,23

This means �3
s1,s2,s3 is approximated as

�3
s1,s2,s3�r1,r2,r3,t� � �1

s1�r1,t��1
s2�r2,t��1

s3�r3,t�


�1 + ds1,s2�r1,r2,t� + ds2,s3�r2,r3,t�

+ ds3,s1�r3,r1,t�� , �10�

where the dislocation-dislocation correlation functions are
defined in the usual way,

ds1,s2�r1,r2,t� ª
�2

s1,s2�r1,r2,t�
�1

s1�r1,t��1
s2�r2,t�

− 1. �11�

Substituting the cluster expansion Eq. �10� into Eq. �9� leads
to a closed evolution equation for �2

s1,s2 or equivalently for
ds1,s2. Its steady-state solution was calculated by Vinogradov
and Willis for infinite parallel screw dislocations.22,23 Their
motion was constrained to simply glide in one direction, so
the difference between the system studied by them and the
one considered in this paper is only the form of the generated
stress field of the particles �ind. They derived an exact solu-
tion for the correlation function, when there were only posi-
tive screw dislocations. However, in the case when both
positive and negative screw dislocations were present from
the equation for the correlation functions, they deduced a
mathematical contradiction. Namely, the correlation func-
tions had to tend to a constant nonzero value for large dis-
tances, which is obviously incorrect for real dislocation ar-
rangements. They also showed that this contradiction was
independent from the actual form of �ind, which means that
for edge dislocations, the equations are not solvable either.
We thus speculate that according to this result, the cluster
approximation is unphysical for the system of parallel edge
dislocations.
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Another traditional method for closing the hierarchy at
this order is the Kirkwood superposition approximation,24

which was successfully used, for instance, in fluid mechanics
�for a brief overview, see, e.g., Ref. 25�. In the context of
dislocations, it was first introduced by Zaiser et al.;7 but after
investigating the resulting equations, only a few basic con-
clusions were drawn.

The Kirkwood superposition approximation expresses the
three-particle density functions in terms of the pair densities,

�3
s1,s2,s3�r1,r2,r3,t� �

�2
s1,s2�r1,r2,t��2

s2,s3�r2,r3,t��2
s3,s1�r3,r1,t�

�1
s1�r1,t��1

s2�r2,t��1
s3�r3,t�

= �1
s1�r1,t��1

s2�r2,t��1
s3�r3,t�


�1 + ds1,s2�r1,r2,t���1 + ds2,s3�r2,r3,t��


�1 + ds3,s1�r3,r1,t�� . �12�

If we keep only the terms linear in the correlation functions
ds1,s2, this expression gives the same result as the “cluster
approximation” �Eq. �10��; i.e., their asymptotic behavior for
large distances is identical. But as we will see, the nonlinear
terms play an important role in the forthcoming derivation.
We would like to emphasize that the Kirkwood factorization
is indeed an approximation. For example, it does not fulfill
the simple normalization condition that if the number of par-
ticles is finite �let us say N�, then �R2�3�. , . ,r , t�d2r= �N
−2��2. Thus, it is expected that the superposition approxima-
tion cannot give precise results for small distances.

In the following, we continue with substituting the Kirk-
wood approximation �Eq. �12�� into the second-order evolu-
tion equation given by Eq. �9�. According to the previous
results for the studied homogeneous system �Eqs. �6� and
�7��, the second term of Eq. �9� simplifies to

� �

�r1
−

�

�r2
���2

s1,s2�r1,r2,t�Fs1,s2�r1 − r2��

= 2s1s2
�

�r1
�b�2

s1,s2�r1 − r2,t��ind�r1 − r2�� . �13�

For the third and the fourth terms of Eq. �9�, one gets

�

�r1
�

s3=	1



R2
�3

s1,s2,s3�r1,r2,r3,t�Fs1,s3�r1 − r3�d2r3

=
s1

�s1�s2

�

�r1
�b�2

s1,s2�r1 − r2,t� �
s3=	1

s3

�s3




R2

�2
s2,s3�− r3,t��2

s3,s1�r3 − r1 + r2,t�


�ind�r1 − r2 − r3�d2r3� , �14�

and

�

�r2
�

s3=	1



R2
�3

s1,s2,s3�r1,r2,r3,t�Fs2,s3�r2 − r3�d2r3

= −
s2

�s1�s2

�

�r2
�b�2

s1,s2�r1 − r2,t� �
s3=	1

s3

�s3




R2

�2
s2,s3�r3 − r1 + r2,t��2

s3,s1�− r3,t�


�ind�r1 − r2 − r3�d2r3� , �15�

where we also applied the �ind�−r�=−�ind�r� relation. Finally,
after introducing rªr1−r2 for the evolution equations of the
second order, one arrives at

��2
s1,s2�r,t�

�t
+

�

�r��b�2
s1,s2�r,t�2s1s2�ind�r� + �s1 − s2��ext

+
1

�s1�s2
�

s3=	1

s3

�s3



R2
„s1�2

s3,s2�r3,t��2
s1,s3�r − r3,t�

+ s2�2
s1,s3�r3,t��2

s3,s2�r − r3,t�…�ind�r − r3�d2r3�� = 0.

�16�

The correlation functions defined by Eq. �11� due to Eqs. �6�
and �7� are simplified to

ds1,s2�r,t� =
�2

s1,s2�r,t�
�s1�s2

− 1. �17�

By substituting Eq. �17� into Eq. �16�, one gets a closed set
of equations for the two-particle correlation functions ds1,s2.

In the rest of this paper, it is assumed that:
�i� the number of positive and negative signed disloca-

tions are equal ��+=�−�.
�ii� the external shear stress is zero ��ext=0�.
As it is explained in details in the Appendix, it follows

that d++�r , t�=d−−�r , t� and d+−�r , t�=d−+�r , t� for every r and
t, meaning there are only two independent correlation func-
tions: d++ and d+−. Under these conditions, the evolution
equations are simplified to �for details, see the Appendix�

�td
++ + 2 � �b�1 + d++���ind + �sc

h + �b
h + �a

h�� = 0, �18�

�td
+− + 2 � �b�1 + d+−��− �ind − �sc

h − �b
h + �a

h�� = 0, �19�

where we have introduced the following terms having stress
dimension:

�sc
h �r,t� ª �+


R2
2dd�r�,t��ind�r − r��d2r�, �20�

�b
h�r,t� ª �+


R2
2dd�r�,t�ds�r − r�,t��ind�r − r��d2r�,

�21�
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�a
h�r,t� ª �+


R2
2ds�r�,t�dd�r − r�,t��ind�r − r��d2r�,

�22�

with dsª �d+++d+−� /2 and ddª �d++−d+−� /2.
Dislocations of opposite signs should move at each given

point with equal velocities but in opposite directions, which
implies

�a
h�r,t� = 0, �23�

for every r and t. This argument is identical to that of the
Appendix of Ref. 8, where a similar stress term is omitted.

The final evolution Eqs. �18� and �19� with Eq. �23� are
very similar to those obtained by Groma et al.8 for the one-
particle dislocation densities. To emphasize the analogy even
more, let us introduce the following notations:

�h�r,t� ª �+�2 + d++�r,t� + d+−�r,t�� = 2�+�1 + ds�r,t�� ,

�24�

�h�r,t� ª �+�d++�r,t� − d+−�r,t�� = 2�+dd�r,t� . �25�

�Here and previously, the “h” superscript refers to the homo-
geneous system.� Although these quantities have density di-
mensions, they are auxiliary quantities and do not carry the
meaning of single-particle densities. The evolution equations
for these newly introduced quantities can be written as

�t�
h + 2 � �b�h��ind + �sc

h + �b
h�� = 0, �26�

�t�
h + 2 � �b�h��ind + �sc

h + �b
h�� = 0, �27�

with

�sc
h �r,t� = 


R2
�h�r�,t��ind�r − r��d2r�, �28�

�b
h�r,t� = 


R2
�h�r�,t�ds�r − r�,t��ind�r − r��d2r�. �29�

These are the equations that govern the evolution of
dislocation-dislocation correlation functions. Instead of their
numerical solution, we will prove their correctness by an
analogy with the phenomena of screening of an individual
dislocation, which is discussed in Sec. III.

III. DISLOCATION DENSITY FIELDS OF A SCREENED
EXTERNAL DISLOCATION

The stress field of a single dislocation decays as 1 /r. This
implies that if the distribution of the dislocations was com-
pletely random in a crystal, then the elastic energy per unit
volume would diverge logarithmically with the crystal size.26

Since this cannot be observed in real systems, the only pos-
sible solution is that dislocations arrange themselves in a
correlated way, which screens out their long-range effect.
The phenomenon lends itself to the analogy with Debye
screening in Coulomb systems.

In order to address the problem, Groma et al.20,21 studied
the induced geometrically necessary dislocation density

around a single external edge dislocation in 2D, proposed an
equation for the stress potential in equilibrium, and gave ana-
lytic solution for the infinite plane—provided the total den-
sity was constant and much larger than the geometrically
necessary dislocation density. While this is not the original
question of the correlation function, within linear-response
theory, however, the result is expected to be valid also to the
correlation problem. It was indeed shown that the screened
dislocation’s stress field decays faster than that of the un-
screened ones, in the direction perpendicular to the Burgers
vector by a power law and in all other directions exponen-
tially. This result was actually compared to correlation simu-
lations, mostly because this was numerically simpler than the
computation of the induced field by an external dislocation,
and in the direction of the power decay, not only the expo-
nent but the entire shape predicted by theory was recovered
in the simulation. However, the exponential decay along the
x axis was not seen as in the theoretical solution, mostly
because of the special conditions of dislocation motion on a
torus as realized in the simulation. In any event, the equiva-
lence of response to an external dislocation and the correla-
tion in the absence of a fixed external one was taken for
granted; precisely the problem addressed in the present pa-
per.

An important peculiar aspect of screening of dislocations
has to be emphasized. First, we recall that in a thermal sys-
tem like Coulomb plasma linear-response theory provides
enough ground to expect the similarity between screening of
an external charge and that in the correlation. On the other
hand, the screening problem of dislocations already emerges
at zero physical temperature. Now the role of the temperature
in keeping oppositely charged particles at a distance is taken
over by the constraint to slip axes, so here, an effective tem-
perature parameter arises that can be determined from com-
parison with simulation.20,21 Now given the fact that we only
have a temperature parameter �which directly appears in the
effective thermodynamic potential� but not usual thermody-
namics, it is by far not obvious that the two types of screen-
ing, namely, the one of an external dislocation, and the one
appearing in the correlation function, should maintain the
same type of equivalence as if Boltzmannian thermodynam-
ics were valid. Hence, in the case of dislocations, it remains
an open problem what the relation is between screening by
response to an external effect and screening in the correla-
tions.

In Sec. II, we constructed the equations of motion for
correlations, now we do the same for the one-particle densi-
ties in the presence of an external dislocation. As a result of
the stress field generated by the inserted object, the positions
of the other dislocations change and a new relaxed state
evolves. In it for instance, one-particle dislocation densities
will not be constant any more. In this section, the time evo-
lution of these functions is investigated.

Due to the spatially varying extra force acting on the dis-
locations, the system is not translation invariant any more.
So, in the case of screening an external dislocation, contrary
to the case in Sec. II, the system is spatially inhomogeneous.
The evolution of the one-particle densities is described by
the first member of the BBGKY hierarchy �Eq. �3��,
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��1
s1�r1,t�
�t

+
�

�r1
�

s2=	1



R2
�2

s1,s2�r1,r2,t�Fs1,s2�r1 − r2�d2r2

+
�

�r1
��1

s1�r1,t�Fscr
s1 �r1�� = 0, �30�

where we introduced the notation Fscr
s �r�ªsbb�ind�r� with

bª 
b
 for the stress field of the extra dislocation.
According to the deduction in Ref. 8, Eq. �30� can be cast

into the following form:

�t� + ��b���ind + �sc − � f + �b�� = 0, �31�

�t� + ��b���ind + �sc − � f + �b�� = 0, �32�

where we have introduced the

��r,t� ª �+�r,t� + �−�r,t� �33�

and

��r,t� ª �+�r,t� − �−�r,t� , �34�

total and geometrically necessary dislocation densities, re-
spectively, and

�sc�r,t� ª 

R2

��r�,t��ind�r − r��d2r�, �35�

�b�r,t� ª 

R2

��r�,t�d̃�r,r�,t��ind�r − r��d2r�, �36�

� f�r,t� ª
1

2



R2
��r�,t�d̃a�r,r�,t��ind�r − r��d2r�, �37�

with d̃ª �d̃+++ d̃−−+ d̃+−+ d̃−+� /4 and d̃aª �d̃+−− d̃−+� /2. We
note that in this inhomogeneous case, the correlation func-
tions do not depend on the difference of their arguments,
meaning one has to remain at the general definition �Eq.

�11��. Here and in the rest of this paper, �·̃� indicates that the
correlation function has two spatial variables. During the
derivation of Eqs. �31� and �32�, no approximations have
been made.

If the correlation functions were short range, it could be
approximated that they depend only on the relative coordi-
nate r1−r2,

�2
s1,s2�r1,r2,t� = �1

s1�r1,t��1
s2�r2,t��1 + ds1,s2�r1 − r2,t�� .

�38�

Here, the correlation function ds1,s2 can be taken from homo-
geneous systems.8 The assumed shortness of dislocation-
dislocation correlations was proved on discrete dislocation
simulation results earlier.7 It was found that the correlation
functions decay to zero exponentially within a few average
dislocation spacings.

Because of the short-range nature of dislocation-
dislocation correlations, the � and � functions can be ap-
proximated by their Taylor expansions in the integrals of
Eqs. �36� and �37�. After keeping only the first nonvanishing
terms, Groma et al. arrived at

�b�r,t� = −
�

2��1 − ��
Dd

b

��r,t�
�x��r,t� �39�

and

� f�r,t� =
�

4��1 − ��
Cdb���r,t� , �40�

where Dd and Cd are positive constants.8 The term �b is a
gradientlike contribution to the stress and is called “back
stress,” while � f can be interpreted as a local flow stress. The
physical correctness of these approximations was proved by
discrete dislocation simulations.8–10

The description of Debye screening of an external dislo-
cations was based on a thermodynamic potential-like func-
tional from which the evolution Eqs. �31� and �32� for � and
� can be derived.20,21 In it, �b is approximated as in Eq. �39�
and � f is omitted. In the case of �=const, the analytical so-
lution of the static case was given and compared to numeri-
cal simulations.20

In what follows, we shall see that to establish the connec-
tion between the evolution of correlation functions and the
screening field of a single external dislocations, we will not
need the approximations in Eqs. �38�–�40� for the correlation
functions �b and � f, respectively, rather will keep the more
general definitions in Eqs. �36� and �37�.

IV. CONNECTION BETWEEN THE SCREENED
DISLOCATION DENSITIES AND THE CORRELATION

FUNCTIONS

In Secs. II and III, we have derived evolution equations
for correlation functions in a homogeneous system within the
Kirkwood approximation, as well as for induced dislocation
densities around a fixed external dislocation. The main mes-
sage of this paper is that the deduced equations for the two
different cases, namely, Eqs. �24� and �25� and Eqs. �31� and
�32� are very similar. More is true, however, they become
identical if special equalities hold for various d-s and time is
appropriately rescaled. In detail, these conditions are the fol-
lowing:

�i� if the numbers of + and − dislocations are the same,
then in the absence of external stresses, d+−�r , t�=d−+�r , t�
and d++�r , t�=d−−�r , t�. So, if the general correlation func-
tions are approximated by the ones taken from homogeneous
systems, i.e.,

d̃s1,s2�r1,r2,t� = ds1,s2�r1 − r2,t� , �41�

�ii� then d̃a�r1 ,r2 , t�=0 and d̃�r1 ,r2 , t�=ds�r1−r2 , t�. In this
case, the “flow-stress” term � f disappears from Eqs. �31� and
�32�, while it was never present in Eqs. �24� and �25�. More-
over, the �b in Eqs. �31� and �32� becomes equal to the �b

h of
Eqs. �24� and �25�.

The main theoretical result of this paper immediately fol-
lows: namely, if one takes a solution of Eqs. �24� and �25� for
d++�r , t� and d+−�r , t�, next substitutes these into Eqs. �31�
and �32�, then the latter equations will have a solution iden-
tical to the one in Eqs. �24� and �25�.

Physically, the equality d̃�r1 ,r2 , t�=ds�r1−r2 , t� corre-
sponds to the approximation when the effect of the stress by
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the external dislocation in Eqs. �31� and �32� are neglected in
the correlation functions. This condition amounts to taking
the external effect as a first-order perturbation, in perfect
analogy of linear-response theory valid for conventional ther-
mal systems.

The divergencelike terms in Eqs. �24� and �25� are multi-
plied by two, which only affects the time scale of the pro-
cess. The appearance of this factor can be well understood if
we consider two dislocations moving in each others’ stress
fields. They relax into the same configuration, either we keep
the position of the first dislocation fixed or not. The only
difference is that the relaxation in the first case �which cor-
responds to screening of an individual dislocation� lasts
twice as long as in the case, when both dislocations can glide
freely �the case of the evolution of correlation functions�.

To sum up, since at t=0, ��r ,0�=�h�r ,0�=�++�− and
��r ,0�=�h�r ,0�=0, it follows that

��r,2t� = �h�r,t� = �+�2 + d++�r,t� + d+−�r,t�� , �42�

and

��r,2t� = �h�r,t� = �+�d++�r,t� − d+−�r,t�� , �43�

for every r and t. We would like to stress that during the
derivation of this statement, we made approximations for
both ��h ,�h� and for �� ,�� functions. For the first set, the
Kirkwood superposition approximation �Eq. �12��, and for
the second linear response was assumed; meaning general
correlation functions were approximated by the ones taken
from infinite homogeneous systems �Eq. �41��. If the com-
parison of the numerically obtained functions confirms the
validity of Eqs. �42� and �43�, then it would also confirm the
applicability of the Kirkwood superposition approximation.
In Sec. V, this comparison is discussed.

V. SIMULATION RESULTS

To measure �h, �, �h, and � numerically, we first per-
formed more than 13 000 different relaxations. In each of
them at the beginning, 128 dislocations �64 with positive and
64 with negative sign� were distributed randomly in an L

L squarelike domain with periodic boundary conditions,
and then they relaxed to a steady state. The d++ and d+−

correlation functions and the �h and �h quantities were de-
termined from these configurations by counting the relative
coordinates of the dislocations. They are plotted in the first
column of Fig. 1.

Afterwards, a new dislocation with positive sign was
placed at the center of the simulation area in each configu-
ration, and the systems were left to relax again, while the
extra dislocation was fixed. These simulations correspond to
the phenomena of Debye screening of an external disloca-
tion. The �+ and �− densities were obtained by counting the
number of positive and negative dislocations falling into
each cell of a 256
256 mesh. Then � and � functions de-
fined in Eqs. �33� and �34� were calculated. They are also
plotted in Fig. 1.

The two functions, according to our expectations are quite
similar. The difference is that in the case of � and �, the
amplitude of the noise is much higher. The simple reason for
this is that a relaxed system of N dislocations gives N�N
−1� data �the relative coordinates� during the calculation of
the correlation functions, but only N data �the positions�
when calculating the densities. In order to make a compari-
son between these functions, the following function was con-
sidered:

I��d� ª 

A


��r� − d�h�r�
 d2r . �44�

The integral of a noise is nearly constant, so if � and �h are
equal except for the noise, then this quantity must have a
minimum at d=1. As it was mentioned in Sec. II, the Kirk-
wood superposition approximation is not expected to be cor-
rect for distances smaller than an average dislocation spac-
ing, and so, Eqs. �42� and �43� should apply only for r= 
r

��tot

−0.5 ��totª�++�− and �tot
−0.5 is the average dislocation

FIG. 1. The �h, �, �h, and � functions in the relaxed state ob-
tained from numerical simulations. The distances are measured in
�tot

−0.5 average dislocation spacings, where �totª�++�− is the total
dislocation density.
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d

FIG. 2. The I� function calculated numerically at different val-
ues �data points�. A second-order polynomial was fitted around the
minimum of the points �solid line�.
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spacing�. Accordingly, it is meaningful to define the domain
of the integration A so that a circle of radius 0.5�tot

−0.5 around
the origin is left out from it. The numerically obtained func-
tion I� is plotted in Fig. 2. As it can be seen, I� indeed has a
minimum around d=1. This confirms that the �h and � func-
tions can be considered equal in first approximation. The
repetition of this calculation for �h and � leads to similar
results.

In Fig. 3, �h and � functions can be seen at different times
obtained from the numerical simulations. According to Eq.
�42�, �h�r , t� was compared to ��r ,2t� because of the factor
of two appearing in the evolution equations of the correlation
functions in Eqs. �26� and �27�. The same can be seen for the

� functions in Fig. 4. To summarize, it can be stated that Eqs.
�42� and �43� are at least in first order, fulfilled.

VI. CONCLUSIONS

In this paper, we derived evolution equations for the cor-
relation functions of long parallel edge dislocations. We
started our analysis at the BBGKY hierarchy of dislocation
many-body densities, which was deduced earlier from the
equations of motion of individual dislocations.5 As a closure
approximation for the hierarchy, the Kirkwood superposition
approximation was used. Our investigations showed that the
evolution of the correlation functions and the dislocation

FIG. 3. The evolution of �h �first row� and � �second row�. The time t is measured in 2��1−��L2

b2�B
dimensionless units. According to Eq. �42�,

�h�r , t� and ��r ,2t� are compared.

FIG. 4. The evolution of �h �first row� and � �second row�. The time t is measured in 2��1−��L2

b2�B
dimensionless units. According to Eq. �43�,

�h�r , t� and ��r ,2t� are compared.
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density fields evolving around a screened dislocation are
closely related �according to Eqs. �42� and �43�, only the
time scale of the processes is different�. In Sec. V, this state-
ment was confirmed by the numerical simulation.

The Kirkwood superposition approximation �Eq. �12��
gives the three-particle dislocation density in terms of the
pair correlations. Contrary to the cluster approximation �Eq.
�10��, it contains quadratic and cubic terms of the correlation
function beside the linear one. As it was mentioned in Sec.
II, these higher-order terms play an important role. Accord-
ing to our analysis presented in this paper, the omission of
the cubic term leads to the disappearance of the back-stress
term �b

h in the evolution Eqs. �26� and �27�. This corresponds
to the mean-field approximation, where dislocation correla-
tions are neglected, resulting in the stress acting on disloca-
tions is simply the self-consistent field �sc

h �Refs. 5 and 6�
If one neglects the cubic and quadratic terms �which is the

cluster approximation�, not only the back stress �b
h but also

the self-consistent field �sc
h disappears, which is obviously

unphysical. We mentioned in Sec. II that the cluster approxi-
mation �Eq. �10�� used by Vinogradov and Willis leads to a
mathematical contradiction in the case of edge dislocations
of opposite signs.22,23 This result is in complete agreement
with our analysis.

The Kirkwood superposition approximation leads to the
evolution Eqs. �26� and �27�. Their correctness was proved
implicitly by the facts that: �i� analogy was found with the
one-particle density evolution equations and �ii� the numeri-
cal work confirmed the similitude between the evolution of
the one- and two-particle distributions. The authors believe
that the obtained results may be valid for different forms of
the interaction force �ind, e.g., for dislocations in anisotropic
medium or for screw dislocations, even for other systems.

Another way of testing the deduced integrodifferential
evolution equations could be their numerical solution. This is
out of the scope of the present paper and requires further
numerical work.
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APPENDIX

In this section, we derive evolution equations for the cor-
relation functions �which were defined by Eq. �11�� starting
from the evolution Eq. �16� of �2

s1,s2. First, we assume that
the densities of positive and negative dislocations are equal
��+=�−�. It can be noted that in this case, if �2

++�r , t�
=�2

−−�r , t� for any t, then the second term of Eq. �16� is equal
for both �2

++ and �2
−−. This means that the evolutions of �2

++

and �2
−− are identical; hence, �2

++�r , t�=�2
−−�r , t� and therefore,

d++�r , t�=d−−�r , t� for every t. For this reason, one has to deal
only with d++, d+−, and d−+. Let us introduce

dp ª �d+− + d−+�/2, �A1�

and

da ª �d+− − d−+�/2, �A2�

namely, the symmetric and the antisymmetric part of d+−.
Furthermore, we define ds and dd as the half of the sum and
the difference of d++ and dp, respectively,

ds ª �d++ + dp�/2, �A3�

and

dd ª �d++ − dp�/2. �A4�

It is also useful to introduce the following quantities having
stress dimensions:

�sc
h �r,t� ª �+


R2
2dd�r�,t��ind�r − r��d2r�, �A5�

�b
h�r,t� ª �+


R2
2dd�r�,t�ds�r − r�,t��ind�r − r��d2r�,

�A6�

� f
h�r,t� ª −

1

2
�+


R2
da�r�,t�da�r − r�,t��ind�r − r��d2r�,

�A7�

�a
h�r,t� ª �+


R2
�2ds�r�,t�dd�r − r�,t�

+
1

2
da�r�,t�da�r − r�,t���ind�r − r��d2r�,

�A8�

�p
h�r,t� ª �+


R2
�da�r�,t��1 + d++�r − r�,t��

− �1 + d++�r�,t��da�r − r�,t���ind�r − r��d2r�.

�A9�

With these new functions from the evolution Eq. �16� for the
correlation functions, one obtains

�td
++ + 2 � �b�1 + d++���ind + �sc

h + �b
h − � f

h + �a
h�� = 0,

�A10�

�td
+− + 2 � �b�1 + d+−��− �ind + �ext − �sc

h − �b
h + � f

h + �a
h + �p

h��

= 0, �A11�

�td
−+ + 2 � �b�1 + d−+��− �ind − �ext − �sc

h − �b
h + � f

h + �a
h − �p

h��

= 0. �A12�

This result can be checked by simple substitution.
In the absence of external stress ��ext=0�, the general Eqs.

�A10�–�A12� can be simplified because for symmetry rea-
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sons d+−�r , t�=d−+�r , t� for every t. In other words, at zero
external stress, if one alters the sign of all dislocations, it
does not affect the behavior of the system. This means that
da=0 and so, � f

h=�p
h =0. In this case, the resulting evolution

equations are

�td
++ + 2 � �b�1 + d++���ind + �sc

h + �b
h + �a

h�� = 0,

�A13�

�td
+− + 2 � �b�1 + d+−��− �ind − �sc

h − �b
h + �a

h�� = 0.

�A14�
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